Identification of novel universal housekeeping genes by statistical analysis of microarray data.

نویسندگان

  • Seram Lee
  • Minjoung Jo
  • Jungeun Lee
  • Sang Seok Koh
  • Soyoun Kim
چکیده

Housekeeping genes are widely used as internal controls in a variety of study types, including real time RT-PCR, microarrays, Northern analysis and RNase protection assays. However, even commonly used housekeeping genes may vary in stability depending on the cell type or disease being studied. Thus, it is necessary to identify additional housekeeping-type genes that show sample-independent stability. Here, we used statistical analysis to examine a large human microarray database, seeking genes that were stably expressed in various tissues, disease states and cell lines. We further selected genes that were expressed at different levels, because reference and target genes should be present in similar copy numbers to achieve reliable quantitative results. Real time RT-PCR amplification of three newly identified reference genes, CGI-119, CTBP1 and GOLGAl, alongside three well-known housekeeping genes, B2M, GAPD, and TUBB, confirmed that the newly identified genes were more stably expressed in individual samples with similar ranges. These results collectively suggest that statistical analysis of microarray data can be used to identify new candidate housekeeping genes showing consistent expression across tissues and diseases. Our analysis identified three novel candidate housekeeping genes (CGI-119, GOLGA1, and CTBP1) that could prove useful for normalization across a variety of RNA-based techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

Identification of specific gene expression after exposure to low dose ionizing radiation revealed through integrative analysis of cDNA microarray data and the interactome

Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biochemistry and molecular biology

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2007